Crystallographic Studies in the Pyrrole Series. Part I. Crystal and Molecular Structure of Ethyl 4-Acetyl-3-ethyl-5-methylpyrrole-2carboxylate

By R. Bonnett, M. B. Hursthouse, and S. Neidle,* Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS
Crystals of the title compound are monoclinic, space group $P 2_{1} / n, Z=4$, with cell dimensions $a=6.772$ (3), $b=14 \cdot 628(5), c=12 \cdot 187(5) A$, and $\beta=94 \cdot 20(12)^{\circ}$. The structure was solved by direct methods, and refined by least-squares to $R 0.0615$ for the 1531 statistically significant reflections measured. The geometry of the molecule is compared with that observed for the pyrrole ring in other systems; in particular it has been observed that the normal symmetrical bonding arrangement in the ring is here considerably perturbed, owing to the electronic effects of the substituents.

The chemistry of the pyrrole series has received considerable attention, both on account of the biological importance of some of these compounds, and because of their inherent chemical and theoretical interest. ${ }^{1}$ Nevertheless it is only the more complex of these substances, the phthalocyanins, ${ }^{2}$ the corrinoids, ${ }^{3}$ and, more recently, the porphyrins, ${ }^{4}$ which have been investigated crystallographically. While some of these structural elucidations stand out very prominently in the history of X-ray crystallography, simpler members of the series have been virtually ignored. The present studies are intended to repair this omission, starting with monocyclic systems and moving by degree to more complex assemblies of pyrrole rings.
Since the molecular dimensions of pyrrole itself have been determined by microwave spectroscopy, ${ }^{5}$ it was decided to investigate a structure in which the system was perturbed by an electron-withdrawing group. The carbonyl group was chosen-since it is well known that in pyrrolyl ketones the reactivity of the carbonyl group to nucleophilic attack is depressed (the dipyrrolyl ketones, indeed, do not form normal ketonic derivatives), ${ }^{6}$ this often being rationalised in terms of mesomeric structures such as (I) and (II). The importance of such canonical

(II)
structures is also thought to be reflected in the i.r. (and Raman) ${ }^{7}$ spectra of pyrrolyl ketones, where the stretching frequency of the carbonyl group is markedly lower than that found for simple aryl ketones [e.g. v(CO): acetophenone in $\mathrm{CCl}_{4}, 1692$; 2-acetylpyrrole in CCl_{4}, 1658; dipyrrol-2-yl ketone in $\left.\mathrm{CHCl}_{3}, 1597 \mathrm{~cm}^{-1}\right] .8$ If

[^0]canonical structures such as (I) and (II), representing the ' amide-like ' character of pyrrolyl carbonyl compounds, are important, molecular dimensions would be expected to differ significantly from those of pyrrole itself. To test this we have examined the crystal and molecular structure of ethyl 4-acetyl-3-ethyl-5-methylpyrrole-2carboxylate (III), which was regarded as a particularly favourable case since in the zwitterionic representation the negative charge may be drawn as delocalised over two carbonyl oxygens [as in (IV)].

(III)

(IV)

EXPERIMENTAL

Crystals of the pyrrole (III) were obtained from ethanol.
Crystal Data.- $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, M=223 \cdot 0$, monoclinic $a=$ $6.772(3), \quad b=14.628(5), \quad c=12.187(5) \AA, \quad \beta=94.20(2)^{\circ}$, $U=1204 \cdot 0 \AA, D_{\mathrm{m}}=1 \cdot 24(2)$ (by flotation), $Z=4, D_{\mathrm{c}}=$ $1 \cdot 230, F(000)=448 \cdot 0$. Space group $P 2_{1} / n$ (No. 14, $C_{2 h}^{5}$) from systematic absences: $h 0 l, 0 k 0$ for $h+l, k=2 n$. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda_{\text {mean }}=1.54178 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=7.31 \mathrm{~cm}^{-1}$. Cell dimensions were obtained from diffractometer measurements of 2θ values. Intensity data were collected for a crystal of dimensions ca. $0.60 \times 0.30 \times 0.30 \mathrm{~mm}$, mounted about the b axis, on a General Electric XRD 6 diffractometer, equipped with a manual goniometer, pulse-height analyser, and scintillation counter. Nickel-filtered copper radiation was used. The stationary-crystal-stationarycounter method of intensity estimation was used throughout, with a 4° take-off angle, and a counting time of 10 s . Individual backgrounds at $\left(2 \theta_{h k l}+1\right)^{\circ}$ were measured for all reflections. The 006 and 060 reflections were used as reference reflections to check on crystal stability; in neither case was there any significant decline in intensity during the course of the data collection.
${ }^{5}$ L. Nygaard, J. T. Nielsen, J. Kirchheimer, G. Maltesen, J. Rastrup-Anderson, and G. O. Sorensen, J. Mol. Structure, 1969, 3, 491 .
${ }^{6}$ H. Fischer and H. Orth, ' Die Chemie des Pyrrols,' vol. 1, Leipzig, 1937, p. 364.
${ }^{7}$ G. B. Bonino, R. Manzoni-Ansidei, and P. Pratesi, Z. phys. Chem., 1934, 25, B, 348.
${ }^{8}$ M. K. A. Khan and K. J. Morgan, J. Chern. Soc., 1964, 2579 ; H. Rappoport and C. D. Willson, J. Amer. Chem. Soc., 1962, 84, 630.

The intensities of 1792 reflections with $2 \theta \leqslant 120^{\circ}$ were measured, of which 1531 were considered to be statistically significant \{net counts were $\geqslant 3 \sigma(I)$, where $\sigma(I)$, the standard deviation in the intensity, was taken ${ }^{9}$ as $[I+$ $\left.2 B+(0.03 I)^{2}\right]^{\frac{1}{2}}$, and B is the background count $\}$. The 261 ' unobserved' reflections were excluded from any subsequent least-squares calculations. No absorption correction was applied.

Structure Solution and Refinement.-The structure was solved by a direct statistical method using the Sayre equation, applied to centro-symmetric structures. ${ }^{10}$ The data was put on an absolute scale and a set of normalised structure factors (E^{\prime}) were calculated by means of a Wilson plot. ${ }^{11}$
The 128 highest E-values were then input to the program REL, ${ }^{12}$ which automatically chose a set of origin-determining reflections, with a number of other, initially symbolic, phases (Table 1). The program then reiteratively applied

Table 1
Starting set of phases for sign determination

Reflection	$\|E\|$ value	Starting phase	Final phase
2,6,3	$2 \cdot 82$	+	
1,2,2	$2 \cdot 27$	+	Origin set
1,3,1	$2 \cdot 14$	+	
5,1,7	$4 \cdot 33$	a	-
3,1,9	$3 \cdot 21$	b	+
2,5,3	3.01	c	$+$
3,8,4	$2 \cdot 72$	d	+

the Sayre equation to each of the 16 starting sets. The set which converged with the least number of iterations also has the highest consistency index C, of 0.945 , where C is defined ${ }^{12}$ as: $C=\langle | E_{h} \sum_{h} E_{h^{\prime}} E_{h-h^{\prime}}| \rangle \mid\langle | E_{h}\left|\sum_{h}\right| E_{h^{\prime}}| | E_{h_{-} h^{\prime}}| \rangle$. 127 out of the 128 phases were determined with a probability of >0.99. The next best solution had $C 0.896$.

An E-map was then calculated with the 127 best-solution phases. This clearly revealed the complete structure, and three cycles of full-matrix least-squares refinement on the positions found, all assigned as carbon atoms, gave $R 0 \cdot 204$. Correct assignment of oxygen and nitrogen atoms reduced R to $0 \cdot 152$. At this stage a number of reflections with poor agreement were remeasured, and three more cycles of isotropic refinement reduced R to $0 \cdot 137$. The temperature factors were then converted to their anisotropic ($\beta_{i j}$) equivalents, and four more cycles of refinement gave R $0 \cdot 104$. Examination of a difference Fourier map clearly revealed all the 17 hydrogen atom positions to be as expected. These were included in four subsequent cycles of full-matrix refinement, with their positional and isotropic thermal parameters being allowed to vary. The 021 and 111 reflections were omitted from the calculations at this stage because of suspected extinction. R was now 0.071 . Examination of the variation of $\Delta^{2} F$ over ranges of $\left|F_{0}\right|$ and $\sin \theta$ suggested that a Hughes-type ${ }^{13}$ weighting scheme was appropriate of the form $\sqrt{ } w=1$ for $F_{0}<F^{*}$ and $\sqrt{ } w=$ F^{*} / F_{0} for $F_{0}>F^{*}$, with F^{*} set at $50 \cdot 0$. Inclusion of this weighting scheme in four final cycles of refinement gave R 0.0615 over the 1529 observed reflections. All parameter shifts were $<0.02 \sigma$, and refinement was judged to be complete. The final positional and thermal parameters for the atoms are listed in Tables 2-4. Supplementary Publication

[^1]Table 2
Final positional parameters for the non-hydrogen atoms, as fractions of the unit-cell edges, with standard deviations in parentheses

Atom	x	y	z
N(1)	0.2455(4)	0.2136(2)	0.1306(2)
$\mathrm{C}(2)$	$0 \cdot 0892$ (5)	$0 \cdot 2546$ (3)	$0 \cdot 1688(3)$
$\mathrm{C}(3)$	$0 \cdot 0490$ (5)	0.2106(2)	$0 \cdot 2671(2)$
C(4)	$0 \cdot 1895$ (5)	$0 \cdot 1395(2)$	0.2860(2)
C(5)	0.3127(5)	$0 \cdot 1429(2)$	0.2006(3)
C(6)	$0 \cdot 4804$ (5)	$0 \cdot 0879(2)$	0.1776(3)
$\mathrm{O}(7)$	0.5641 (4)	$0 \cdot 1163$ (2)	0.0870(2)
$\mathrm{C}(8)$	$0 \cdot 7376(5)$	0.0661 (3)	$0.0580(3)$
C(9)	$0 \cdot 7974$ (7)	$0 \cdot 1053$ (4)	-0.0477(4)
$\mathrm{C}(10)$	-0.0082(7)	$0 \cdot 3321$ (3)	$0 \cdot 1045$ (4)
C(11)	-0.1061(5)	$0 \cdot 2362$ (2)	0.3397(3)
$\mathrm{O}(12)$	$-0 \cdot 1002(5)$	0.2065(2)	0.4345(2)
C(13)	-0.2680(7)	$0 \cdot 2993$ (3)	$0 \cdot 3009$ (5)
$\mathrm{C}(14)$	$0 \cdot 2022$ (6)	$0 \cdot 0691$ (3)	$0 \cdot 3765(3)$
$\mathrm{C}(15)$	$0.0645(7)$	$-0.0104(3)$	$0 \cdot 3509(4)$
$\mathrm{O}(16)$	0.5471 (4)	0.0241 (2)	0.2327(2)

Table 3
Final anisotropic thermal parameters $\left(\times 10^{4}\right) *$ for the nonhydrogen atoms, with standard deviations in parentheses

			β_{32}	β_{12}	β_{12}	β_{23}
Atom	β_{11}	β_{22}	β_{33}			
$\mathrm{~N}(1)$	$233(7)$	$45(1)$	$58(2)$	$3(2)$	$51(3)$	$2(1)$
$\mathrm{C}(2)$	$235(8)$	$41(2)$	$65(2)$	$2(3)$	$45(4)$	$-4(1)$
$\mathrm{C}(3)$	$219(8)$	$43(2)$	$59(2)$	$-6(3)$	$44(3)$	$-7(1)$
$\mathrm{C}(4)$	$227(8)$	$45(2)$	$54(2)$	$-1(3)$	$35(3)$	$-4(1)$
$\mathrm{C}(5)$	$225(8)$	$44(2)$	$61(2)$	$1(3)$	$43(3)$	$1(1)$
$\mathrm{C}(6)$	$234(8)$	$50(2)$	$73(2)$	$-2(3)$	$48(4)$	$1(2)$
$\mathrm{O}(7)$	$269(6)$	$57(1)$	$80(2)$	$27(2)$	$84(3)$	$8(1)$
$\mathrm{C}(8)$	$201(8)$	$65(2)$	$94(3)$	$21(4)$	$54(4)$	$-4(2)$
$\mathrm{C}(9)$	$265(11)$	$79(3)$	$104(4)$	$7(4)$	$78(6)$	$-3(3)$
$\mathrm{C}(10)$	$346(12)$	$54(2)$	$88(3)$	$31(4)$	$58(5)$	$11(2)$
$\mathrm{C}(11)$	$281(9)$	$45(2)$	$83(3)$	$-10(3)$	$76(4)$	$-10(2)$
$\mathrm{O}(12)$	$506(11)$	$70(2)$	$84(2)$	$29(3)$	$135(4)$	$2(2)$
$\mathrm{C}(13)$	$323(12)$	$72(3)$	$137(5)$	$24(5)$	$123(7)$	$-2(3)$
$\mathrm{C}(14)$	$298(11)$	$54(2)$	$60(3)$	$1(4)$	$45(4)$	$4(2)$
$\mathrm{C}(15)$	$345(12)$	$61(2)$	$88(3)$	$-33(4)$	$25(5)$	$15(2)$
$\mathrm{O}(16)$	$320(8)$	$70(2)$	$108(2)$	$46(3)$	$78(3)$	$28(2)$

* In the form: $f_{i}=f_{i}{ }^{0} \exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33}{ }^{2}+\right.$ $\left.2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} h l\right)$.

Table 4
Final positional and isotropic temperature factors for the hydrogen atoms, with standard deviations in parentheses

Atom	x	y	z	B / \AA^{2}
$\mathrm{H}(0101)$	0.289(6)	0.232(3)	0.066(4)	3.47(88)
$\mathrm{H}(0208)$	$0 \cdot 707$ (5)	$0 \cdot 000$ (3)	$0 \cdot 053(3)$	2.09(70)
$\mathrm{H}(0308)$	$0 \cdot 865$ (7)	$0 \cdot 076(3)$	$0 \cdot 121(4)$	4.40(95)
$\mathrm{H}(0409)$	$0 \cdot 801$ (7)	$0 \cdot 176(4)$	-0.048(4)	5.63(119)
$\mathrm{H}(0509)$	0.702(8)	$0.096(4)$	$-0 \cdot 102(5)$	5.93(145)
$\mathrm{H}(0609)$	0.961 (8)	$0.081(4)$	$-0.050(4)$	6.82(128)
$\mathrm{H}(0710)$	$0 \cdot 040(7)$	$0 \cdot 347$ (3)	$0 \cdot 034(4)$	$4 \cdot 83$ (105)
$\mathrm{H}(0810)$	$-0.038(7)$	$0 \cdot 387(3)$	$0 \cdot 143(4)$	4.47(103)
$\mathrm{H}(0910)$	$-0.151(9)$	$0 \cdot 318(4)$	0.076(5)	6.63(138)
$\mathrm{H}(1013)$	-0.199(7)	$0 \cdot 363(4)$	$0 \cdot 299(4)$	5.55(116)
$\mathrm{H}(1113)$	-0.340 (8)	$0 \cdot 278(4)$	0.218(4)	6.20(129)
$\mathrm{H}(1213)$	$-0.387(7)$	$0 \cdot 296(3)$	$0 \cdot 340$ (4)	5.06(107)
$\mathrm{H}(1314)$	$0 \cdot 161$ (6)	$0 \cdot 098(3)$	0.441 (4)	$4 \cdot 04(93)$
$\mathrm{H}(1414)$	$0 \cdot 334(6)$	$0 \cdot 046(2)$	$0 \cdot 384(3)$	$2 \cdot 21$ (72)
$\mathrm{H}(1515)$	$0 \cdot 060$ (6)	$-0.058(3)$	$0 \cdot 403(4)$	3.54(86)
$\mathrm{H}(1615)$	$0 \cdot 106(6)$	$-0.041(3)$	$0 \cdot 285(4)$	3.14(84)
H(1715)	-0.103(8)	$0 \cdot 009(3)$	$0 \cdot 336$ (4)	6.52(117)

Mean $\mathrm{C}-\mathrm{H} 1 \cdot 02(12) \AA$. The last two digits in each identification number refer to the atom to which each hydrogen atom is bound.

[^2]No. SUP 20346 (4 pp., 1 microfiche), lists the final observed and calculated structure factors.*
All calculations were performed on the University of London CDC 6600 computer, using the ' X-Ray 70 ' crystallographic computing system ${ }^{14}$ except where otherwise stated. The scattering factors were taken from ref. 15.

DISCUSSION

The structure of the pyrrole (III) is shown in Figure 1. ${ }^{16}$ Bond lengths and bond angles are shown in Figures 2 and 3. Table 5 compares the structural parameters observed for the ring system with those reported for
peared, bond $\mathrm{N}(\mathbf{1})-\mathrm{C}(2)$ being considerably shorter than $\mathrm{N}(1)-\mathrm{C}(5)$, while $\mathrm{C}(2)-\mathrm{C}(3)$ is longer than $\mathrm{C}(4)-\mathrm{C}(5)$. Derivation of π-bond order, following the Cruikshank and Sparks treatment ${ }^{17}$ (assuming $1.42 \AA$ for the $\mathrm{C}-\mathrm{N}$ bond involving trigonally hybridised atoms, and $1.27 \AA$ for the $\mathrm{C}=\mathrm{N}$ double bond), ${ }^{18}$ gives 0.53 for the $\mathrm{N}(1)-\mathrm{C}(2)$ bond in compound (III), to be compared with a π-bond order, similarly derived, of 0.27 for the $\mathrm{C}-\mathrm{N}$ bonds of pyrrole itself. Other π-bond orders are given in Table 5, and overall they indicate the importance of the mesomeric dipolar structures (V) and (VI) summarised in (IV).

Table 6 indicates that although the ring itself [plane

Table 5
Structural parameters and π-bond orders for the pyrrole ring in various systems
(a) Distances and π-bond orders
$\mathrm{N}(1)-\mathrm{C}(2)$
$\mathrm{N}(1)-\mathrm{C}(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$

Pyrrole unit in porphyrin ${ }^{\text {a }}$	
Bond length	π-Bond order *
1.37	$0 \cdot 27$
1.37	$0 \cdot 27$
1.45	$0 \cdot 16$
1.45	$0 \cdot 16$
$1 \cdot 34$	0.91

Pyrrole b	
Bond length	π-Bond order
1.370	0.27
1.370	0.27
1.382	0.58
1.382	0.58
1.417	0.35

Compound (III)	
Bond length	π-Bond order
1.330	0.53
1.395	$0 \cdot 13$
$1 \cdot 404$	$0 \cdot 44$
1.382	0.58
$1 \cdot 417$	$0 \cdot 35$

(b) Bond angles (${ }^{\circ}$)

At N(1)	108	$109 \cdot 8$	$110 \cdot 6$
C(2)	109	$107 \cdot 7$	$107 \cdot 6$
C(5)	109	$107 \cdot 7$	$107 \cdot 4$
C(3)	107	$107 \cdot 4$	$107 \cdot 8$
C(4)	107	$107 \cdot 4$	$106 \cdot 6$

* Calculated following Cruikshank and Sparks' treatment, ${ }^{17}$ and taking π-bond orders of 0 for σ bonds between $s p^{2}$ hybridised atoms, and 1 for double bonds.
${ }^{6}$ Ref. 4. ${ }^{6}$ Ref. 5.
pyrrole itself, ${ }^{5}$ and for a typical pyrrole unit in the porphyrin nucleus. ${ }^{4}$
It is apparent that the presence of two carbonyl sub-

Figure 1 Perspective drawing of a molecule of ethyl 4-acetyl-3-ethyl-5-methylpyrrole-2-carboxylate. The thermal ellipsoids are scaled to include 50% probability. The angles shown denote dihedral angles with respect to the mean plane of the ring
stituents has markedly altered the shape of the pyrrole ring. The $C_{2 v}$ symmetry of the parent system has disap-

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

14 A revision of X-Ray '67, 'Program System for X-Ray Crystallography,' University of Maryland Technical Reports 67-58, 1967.
(1)] is planar within the limits of experimental error, most of the substituent atoms in this tetrasubstituted

Figure 2 Bond lengths (\AA); values in square brackets are corrected for thermal motion
molecule deviate significantly from this plane. Both $\mathrm{C}(10)$ and $\mathrm{C}(14)$ are out of plane by $>5 \sigma$. The acetyl
15 ' International Tables for X-Ray Crystallography,' vol. III, 1962, Kynoch Press, Birmingham.
${ }^{16}$ C. K. Johnson, ORTEP, ORNL-3794, Oak Ridge National Laboratory, 1965.
${ }_{17}$ D. W.' J. Cruikshank and R. A. Sparks, Proc. Roy. Soc., 1960, $A, 258,270$; D. W. J. Cruikshank, Tetrahedron, 1962, 17, 155.
${ }^{18}$ T. A. Hamor, W. S. Caughey, and J. L. Hoard, J. Amer. Chem. Soc., 1965, 87, 2305.
group, though planar itself [plane (2)] is twisted by $c a$. 15° out of the ring plane whereas the ester carbonyl [plane (3)] is twisted by only one degree from this plane. This suggests that (VI) is more important than (V), a

Figure 3 Valence angles (deg.)
suggestion which is supported by the observation that $C(5)-C(6)$ is somewhat shorter (by 7σ) than $C(3)-C(11)$. Other bond lengths and angles do not differ appreciably

from accepted values, ${ }^{19}$ apart from $\mathrm{C}(14)-\mathrm{C}(15)$ and $\mathrm{C}(8)-\mathrm{C}(9)$ both of which are expected to be normal $\mathrm{C}_{s p^{2}-\mathrm{C}_{s p^{3}}}$ bonds. Both $\mathrm{C}(9)$ and $\mathrm{C}(15)$ have larger

Table 6

Equations of mean planes in the form $p x+q y+r z=s$ in direct space, and in square brackets displacements (\AA) from the mean planes through various parts of the molecule

Plane (1): N(1), C(2)—(5). $\quad 3.859 \quad 9.313 \quad 5.808 \quad 3.697$
$[\mathrm{N}(1)-0.003, \mathrm{C}(2)-0.001, \mathrm{C}(3) 0.005, \mathrm{C}(4)-0.006, \mathrm{C}(5) 0.005$, $\mathrm{C}(6) 0.006, \mathrm{O}(7) 0.068, \mathrm{C}(10)-0.029, \mathrm{C}(11) 0.066, \mathrm{O}(12)$ $0.361, \mathrm{C}(13)-0.197, \mathrm{C}(14)-0.087, \mathrm{O}(16)-0.011]$
Plane (2): C(3), C(11), O(12), C(13). $\quad 3.579 \quad 11.472 \quad 3.479 \quad 3.519$ $[\mathrm{C}(3) 0.002, \mathrm{C}(11)-0.007, \mathrm{O}(12) 0.003, \mathrm{C}(13) 0.002]$
Plane (3): C(5), $\mathrm{C}(6), \mathrm{O}(7), \mathrm{O}(16) . \quad 3.767 \quad 9.097 \quad 6.204 \quad 3.720$ $[\mathrm{C}(5) 0.003, \mathrm{C}(6)-0.009, \mathrm{O}(7) 0.003, \mathrm{O}(16) 0.004]$
thermal motion than the other atoms in the molecule, and the discrepancies are probably due to neglect of this

[^3]effect. A correction utilising the rider model of Busing and Levy ${ }^{20}$ has been calculated (Figure 2), which has resulted in some improvement.

The conformation of the ethoxycarbonyl group with respect to the ring is of some interest. ${ }^{21,22}$ I.r. and other studies ${ }^{23}$ have suggested that rotational isomerism is possible, and, taking pyrrole (III) as example, two isomers (VII) and (VIII) would be expected in solution. Such isomerism bears a vinylogous relationship to the rotational isomerism observed in amides and could also occur, in principle, at the $C(3)$ acetyl group. Our study has shown that in the solid state only the form (VIII) is present, and that the only hydrogen bonding in the crystal is of the intermolecular type. In accordance with this the i.r. spectrum (KBr disc) shows a broad $\mathrm{N}-\mathrm{H}$ stretching band at 3200 and carbonyl stretching ferequencies at 1705 and $1630 \mathrm{~cm}^{-1}$ (cf. refs. 21 and 22).

The crystal structure consists of chains of hydrogenbonded molecules, the chains running roughly parallel to the c axis (Figure 4). The hydrogen bonding is between $\mathrm{H}(1)$ of one molecule and $\mathrm{O}(12)$ of a screw-related

Figure 4 A view of the molecular packing, projected along the b axis direction. Dashed lines represent hydrogen bonds. $\mathrm{N}(1)$ and $\mathrm{O}(12)$ are related by the symmetry operation $\left(\frac{1}{2}+x\right.$, $\left.\frac{1}{2}-y, z-\frac{1}{2}\right)$
molecule. Figure 5 shows the situation in more detail. The distances and angles involved correspond closely to those found in other $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ systems. ${ }^{24,25}$ There are no other intermolecular contacts within van der Walls radii.

24 See, for example, F. H. Allen, and J. Trotter, J. Chem. Soc. (B), 1971, 1073.
${ }^{25} \mathrm{~J}$. Donohue in 'Structural Chemistry and Molecular Biology,' eds. A. Rich and N. Davidson, Freeman, San Francisco, 1968.

It is interesting to note the conclusion ${ }^{4}$ that ring deformation of the sort observed here has not been detected

Figure 5 Detail of the hydrogen bonding. Distances in \AA; angles (deg.): $\mathrm{N}(1)-\mathrm{H}(1)-\mathrm{O}(12) 70 \cdot 7(38)^{\circ}, \mathrm{N}(1)-\mathrm{O}(12)-\mathrm{C}(11)$ $129 \cdot 6(3)^{\circ}$, and $\mathrm{H}(1)-\mathrm{O}(12)-\mathrm{C}(11) 126 \cdot 7(27)^{\circ}$
in the porphyrin series. Because of the considerable aromatic stabilisation of the porphyrin system such effects would be expected to be small, and would re-
quire powerful electron-withdrawing substituents to reveal them. Of the systems listed by Fleischer ${ }^{4}$ only one (nickel 2,4-diacetyldeuteroporphyrin-IX dimethyl ester ${ }^{18}$) fits into this category. A comparison of average bond dimensions with those of nickel aetioporphyrin ${ }^{26}$ [$\mathrm{N}(1)-\mathrm{C}(2)$ longer, $\mathrm{C}(2)-\mathrm{C}(3)$ shorter in the latter] suggests that a mesomeric effect of the carbonyl group is being detected. However, the bond length differences, although in the right direction, are small and possibly within experimental error. Evidently it is desirable that further detailed structural studies on porphyrins with strongly polarising substituents (some of which, e.g. cytohaem-a, chlorophyll-c have important biochemical functions) should be undertaken.

The award of an I.C.I. Research Fellowship (to S. N.) is gratefully acknowledged.
[1/2129 Received, 11th November, 1971]
${ }^{26}$ E. B. Fleischer, J. Amer. Chem. Soc., 1963, 85, 146.

[^0]: ${ }^{1}$ For a comprehensive review see H. H. Inhoffen, J. W. Buchler, and P. Jäger, Forschr. Chem. org. Naturstoffe, 1968, 26, 284.
 ${ }^{2}$ J. M. Robertson, J. Chem. Soc., 1935, 615.
 3 D. C. Hodgkin, J. Kamper, J. Lindsey, M. MacKay, J. Pickworth, J. H. Robertson, C. B. Shoemaker, J. G. White, R. J. Prosen, and K. N. Trueblood, Proc. Roy. Soc., 1957, A, 242, 228.
 ${ }^{4}$ For a summary see E. B. Fleischer, Accounts Chem. Res., $1970,3,105$.

[^1]: ${ }^{2}$ R. H. Eisenberg and J. A. Ibers, Inorg. Chem., 1966, 5, 411. ${ }^{10}$ D. Sayre, Acta Cryst., 1952, 5, 60.
 11 A. J. C. Wilson, Acta Cryst., 1949, $2,318$.
 II

[^2]: ${ }^{12}$ R. E. Long, Ph.D. Thesis, University of California, Los Angeles, 1965.
 ${ }^{13}$ E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.

[^3]: ${ }^{10}$ Chem. Soc. Special Publ., No. 18, 1965.
 ${ }^{20}$ W. R. Busing and H. A. Levy, Alta Cryst., 1964, 17, 142.
 ${ }^{21}$ R. Grigg, J. Chem. Soc., 1965, 5149.
 ${ }_{22}$ R. A. Jones and A. G. Moritz, Spectrochim. Acta, 1965, 21, 295.
 ${ }^{21}$ R. A. Jones, Adv. Heterocyclic Chem., 1970, 11, 456.

